skip to main content


Search for: All records

Creators/Authors contains: "Hublin, Jean-Jacques"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diet is a crucial trait of an animal’s lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ 66 Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark ( Otodus megalodon ) and the great white shark ( Carcharodon carcharias ). We reveal that dietary δ 66 Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species’ trophic level. We observe significant δ 66 Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark. 
    more » « less
  2. Abstract Bone surface modifications are crucial for understanding human subsistence and dietary behaviour, and can inform about the techniques employed in the production and use of bone tools. Permission to destructively sample such unique artefacts is not always granted. The recent development of non-destructive proteomic extraction techniques has provided some alternatives for the analysis of rare and culturally significant artefacts, including bone tools and personal ornaments. The Eraser Extraction Method (EEM), first developed for ZooMS analysis of parchment, has recently been applied to bone and ivory specimens. To test the potential impact of the EEM on ancient bone surfaces, we analyse six anthropogenically modified Palaeolithic bone specimens from Bacho Kiro Cave (Bulgaria) through a controlled sampling experiment using qualitative and 3D quantitative microscopy. Although the overall bone topography is generally preserved, our findings demonstrate a slight flattening of the microtopography alongside the formation of micro-striations associated with the use of the eraser for all bone specimens. Such modifications are similar to ancient use-wear traces. We therefore consider the EEM a destructive sampling approach for Palaeolithic bone surfaces. Together with low ZooMS success rates in some of the reported studies, the EEM might not be a suitable approach to taxonomically identify Pleistocene bone specimens. 
    more » « less
  3. Abstract

    The fossil record suggests that at least two major human dispersals occurred across the Eurasian steppe during the Late Pleistocene. Neanderthals and Modern Humans moved eastward into Central Asia, a region intermittently occupied by the enigmatic Denisovans. Genetic data indicates that the Denisovans interbred with Neanderthals near the Altai Mountains (South Siberia) but where and when they metH. sapiensis yet to be determined. Here we present archaeological evidence that document the timing and environmental context of a third long-distance population movement in Central Asia, during a temperate climatic event around 45,000 years ago. The early occurrence of the Initial Upper Palaeolithic, a techno-complex whose sudden appearance coincides with the first occurrence ofH. sapiensin the Eurasian steppes, establishes an essential archaeological link between the Siberian Altai and Northwestern China . Such connection between regions provides empirical ground to discuss contacts between local and exogenous populations in Central and Northeast Asia during the Late Pleistocene.

     
    more » « less
  4. Abstract Objectives

    The taxonomic status of isolated hominoid teeth from the Asian Pleistocene has long been controversial due to difficulties distinguishing between pongine and hominin molars given their high degree of morphometrical variation and overlap. Here, we combine nonmetric and geometric morphometric data to document a dental pattern that appears to be taxonomically diagnostic amongPongo. We focus on the protoconule, a cuspule of well‐documented evolutionary history, as well as on shape differences of the mesial fovea of the upper molars.

    Materials and methods

    We examined 469 upper molars of eight hominid genera (Australopithecus,Paranthropus,Homo,Meganthropus,Sivapithecus,Pan,Gorilla, andPongo), including representatives ofHomo erectusand extinct and recentPongo. Analyses were conducted at the enamel‐dentine junction to overcome the limitations introduced by dental wear.

    Results

    We found that a moderate or large protoconule is present in ~80% of Pleistocene and extantPongo. Conversely, a moderate to pronounced protoconule in hominins,Meganthropus, and African great apes occurs in low frequencies (~0–20%). Canonical variate analyses for the mesial fovea show that Pleistocene and extantPongocluster together and are clearly differentiated from all other groups, except forSivapithecus.

    Discussion

    This study suggests that the protoconule and the shape of the mesial fovea in upper molars are useful features for the taxonomic identification of isolated hominid teeth. By identifying these new features, our results can contribute to the better understanding of hominoid evolutionary history and biogeography during the Asian Pleistocene. However, we emphasize that the reported features should be used in combination with other diagnostic variables for the most accurate taxonomic assessments.

     
    more » « less